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Abstract

The lack of satellite servicing capabilities significantly impacts the development

and operation of current orbital assets. With autonomous solutions under consider-

ation for servicing, the purpose of this research is to build and validate a low-cost

hardware platform to expedite the development of autonomous satellite proximity

operations. This research aims to bridge the gap between simulation and existing

higher fidelity hardware testing with an affordable alternative. An omnidirectional

variant of the commercially available TurtleBot3 mobile robot is presented as a 3-

DOF testbed that demonstrates a satellite servicing inspection scenario. Reference

trajectories for the scenario are generated via optimal control using the commercial

solver GPOPS-II, and results from simulation and hardware demonstration are pre-

sented. Recommendations are then given for using the platform as a rapid method

for experimentally verifying various satellite control algorithms.
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LOW-COST TERRESTRIAL DEMONSTRATION OF AUTONOMOUS

SATELLITE PROXIMITY OPERATIONS

I. Introduction

1.1 Motivation

As commercial, scientific, and military interest in space expands, the ability to

revisit assets on orbit for servicing has become a necessity [1]. However, the complex-

ity of these servicing missions is exceeding the capabilities of humans to manually

intervene and reveals the need for autonomous solutions.

The historic context for the space developments leading up to the first autonomous

orbital rendezvous demonstrations is provided by Woffinden in “Navigating the Road

to Autonomous Orbital Rendezvous” [2]. Woffinden recounts the United States’ and

Russia’s rendezvous missions starting from the 1960s, including examples of on-orbit

servicing in the early Gemini missions, the shuttle missions to repair the Hubble

Telescope, and on-going missions on the International Space Station. While these

missions have demonstrated successful on-orbit servicing, all of these missions had

humans in the loop. As repair mission requirements increase in complexity, the ability

to use humans to repair on-orbit assets is diminishing. Further, these missions have all

occurred close to the earth in Low Earth Orbit (LEO). In the case of large, expensive,

and strategically important satellites in Geosynchronous Equatorial Orbit (GEO), it

may not be feasible to send human astronauts for GEO repair missions [1]. For

teleoperation from a ground station, as distances from Earth increase the latency

involved may be too high to handle the complex maneuvers of a repair mission.
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Therefore, the need for an on-board autonomous solution is clear.

Autonomous Guidance, Navigation, and Control (GNC) algorithms can be simu-

lated to demonstrate sufficient performance before being deployed to an operational

environment. However, including hardware testing is desirable to demonstrate that

the algorithm can also perform in real-time on actual hardware. The purpose of

this work is to build a framework that can abstract the orbital domain from an au-

tonomous on-orbit servicing satellite controller to enable testing on a ground-based

platform. This framework yields a flexible and cost-effective method for conducting

rapid prototyping of novel autonomous satellite behaviors prior to funding higher

fidelity testing and ultimately orbital demonstration.

1.2 Problem Statement

One source of difficulty in developing autonomous algorithms for space applica-

tions is performing hardware testing to experimentally validate simulated results.

With the high cost of launching developmental assets to orbit, engineers must rely

on terrestrial methods for a majority of initial hardware testing. Terrestrial meth-

ods often involve the use of highly specialized laboratory space and state-of-the-art

equipment; therefore, only a handful of labs have the resources to perform this level

of experimentation [3, 4, 5]. This research does not aim to replace higher fidelity

platforms fully. This research strives to accelerate autonomous control development

by bridging the gap between simulation and higher fidelity hardware testing with an

alternative low-cost setup using open-source wheeled mobile robots.

1.3 Research Objectives

The primary objective of this research is to build and validate a hardware platform

for rapidly testing various control methods in the development of autonomous satellite
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proximity operations. The first objective is to generate a set of reference trajectories

of a deputy satellite performing a time optimal inspection scenario about a rotating

chief satellite. The second objective is to design and assemble a terrestrial hardware

platform that is capable of demonstrating the reference scenario. The third objective

is to perform the inspection scenario on the hardware and compare its performance

against the time optimal reference trajectories. The result is a local platform that

can be used to physically demonstrate current and future GNC research that would

otherwise be restricted to simulation.

1.4 Assumptions and Limitations

The Aerospace Corporation divided on-orbit servicing capabilities into seven cat-

egories: non-contact support, orbit modification, refueling, upgrade, repair, assembly,

and debris mitigation [6]. Non-contact support includes inspection of a client’s satel-

lite and serves as the example mission scenario for this research. The other servicing

missions involve the servicer mating with the client satellite and introduces contact

dynamics that is not investigated in this work.

Satellite proximity operations in the literature are often further separated into

two categories: cooperative and noncooperative [7]. Opromolla’s research defines

cooperative satellites as being able to provide the chaser satellite with information to

estimate the pose (relative position and attitude) of the target satellite. Inspecting

a cooperative satellite allows this research to focus on autonomous control without

issues related to state estimation.

Further, the research is performed on a mobile robot system with three degrees of

freedom (DOF) via two translational DOF and one rotational DOF. This is contrasted

to a real satellite in orbit with six DOF, via three translational DOF and three rota-

tional DOF. This connection is possible due to the Clohessy-Wiltshire (CW) equations
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of relative orbital motion that show that the radial (x) and in-track (y) components

of relative orbital motion can be decoupled from the cross-track (z) component in

the Local Vertical, Local Horizontal (LVLH) reference frame [8]. However, the CW

equations impose a few assumptions, including that the chief satellite’s orbit is cir-

cular and that the distance between the chief and deputy remains sufficiently small

compared to the distance between the chief and the Earth. These assumptions fit well

with a typical GEO satellite orbital profile, and, therefore, this research investigates

satellite inspection maneuvers within 10 km of a chief satellite stationed in GEO.

1.5 Methodology Overview

First, time optimal reference trajectories for a satellite inspection scenario are

generated via a commercial optimal control solver known as GPOPS-II [9]. In this

research, GPOPS outputs full state information about a servicer satellite with one

rotational and two translational DOF. The optimal solution adheres to a collision

avoidance constraint, thrust and torque control constraints, and terminal constraints

such that the servicer ends at relative rest within a cone originating from the client

at a desired distance and with the servicer pointing towards the client.

Second, the hardware platform is constructed as a holonomic mobile robot based

on the TurtleBot open-source robotic platform. This variant of the TurtleBot uses

three omni-wheels separated by 120 degrees to produce holonomic motion that follows

the motion of a double integrator or a free-flying robot [10]. The omni-wheel TurtleBot

variant uses the Robot Operating System (ROS) to connect the on-board Raspberry

Pi to a Linux laptop for telemetry, a windows desktop hosting a motion capture

system, and to a MATLAB or Simulink control algorithm for testing.

Third, the reference scenarios are performed on the hardware in the Autonomy and

Navigation Technology (ANT) center VICON motion capture chamber that provides
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pose measurements to compare the performance of the testbed with the generated

reference trajectories.

1.6 Thesis Contributions

• Built a low-cost three degrees of freedom (3-DOF) hardware testbed for au-

tonomous satellite servicing research based on a variant of the commercially

available TurtleBot mobile robot. The testbed provides a lower-fidelity alterna-

tive to limited state-of-the-art facilities for rapid control algorithm prototyping.

• Set up a ROS network that enables communication between the mobile robot,

the satellite control simulation that outputs the guidance trajectories and con-

trol commands, and the motion capture system that relays navigation measure-

ments for feedback control and testbed performance analysis.

• Provided an example satellite servicing scenario involving the inspection of a

rotating chief satellite that demonstrates the capabilities of the testbed. The

example scenario and example feedback controller are designed to be modified

or replaced to aid the development of future controls research.

• Performed simulation and hardware testing to validate the performance of the

testbed across seven test cases based on the example scenario. Testing is per-

formed in two different motion capture facilities to highlight the flexibility of

the testbed in different environments and to show the effect of distance scaling

in smaller laboratories.

1.7 Document Overview

This thesis is further organized into five chapters as follows:
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Chapter II provides background information on satellite dynamics, including the

orbital environment, relative orbital dynamics, and a 3-DOF problem formulation.

The chapter further details relevant mobile robot dynamics for comparison. Then,

optimal control methods are presented. Lastly, ROS is briefly introduced.

Chapter III describes the developed testbed framework, including the control sim-

ulation, the ROS network setup, the mobile robot hardware implementation, and the

motion capture system.

Chapter IV details the results obtained from performing a satellite servicing in-

spection scenario on the hardware testbed. The results are compared to time optimal

control reference trajectories for the servicing scenario.

Chapter V summarizes the findings of the research and emphasizes the ability of

low-cost hardware testing to enable rapid autonomous algorithm development. The

chapter concludes with recommendations on how to improve the testbed and suggests

additional scenarios for demonstration.
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II. Background and Literature Review

This chapter provides the background necessary to abstract the motion of a satel-

lite to a wheeled mobile robotic testbed for hardware demonstration. First, the

models for relative orbital dynamics of a satellite and holonomic motion of a three

omni-directional wheeled mobile robot are introduced. Next, optimal control meth-

ods and a commercial solver are discussed. Finally, the framework that connects the

spacecraft simulation and the robotic hardware are introduced.

2.1 Satellite Dynamics

This section presents the background on satellite orbital dynamics that is relevant

to the development of an example satellite control system. A description of the orbital

environment, a classic set of relative satellite motion equations, and a three degrees of

freedom (3-DOF) formulation is presented to scope the breadth of satellite dynamics

to this research.

2.1.1 Orbital Environment

There is a wide variety in applications of space assets, and a core part of un-

derstanding the behavior of a satellite is in understanding its orbital regime. The

following section presents a common reference frame and the classical orbit elements

used to describe the motion of a satellite in orbit around the Earth.

2.1.1.1 Earth-Centered-Inertial Reference Frame

A common reference frame for the description of satellite motion is the Earth-

Centered-Inertial (ECI) reference frame. In the ECI frame, the x̂ vector points from

the Earth’s center of mass to the vernal equinox, the ẑ vector is normal to the equa-
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torial plane through the north pole, and the ŷ vector is perpendicular to the others

along the equatorial plane [11].

Figure 1: Earth-Centered-Inertial Reference Frame [11]

2.1.1.2 Classical Orbital Elements

Within the ECI reference frame, the orbit of a given satellite can be defined by

the six Classical Orbital Elements (COEs): semi-major axis (a), eccentricity (e),

inclination (i), right ascension of the ascending node (Ω), argument of perigee (ω),

and true anomaly (ν).

The satellite in the inspection scenario of this research is assumed to be in a

Geosynchronous Equatorial Orbit (GEO) with a period of one sidereal day, a semi-

major axis of 42,164 km (approximately 35,786 km above sea level), an eccentricity

of 0 (circular), and an inclination of 0 deg (on the equatorial plane). Both the

right ascension of the ascending node and the argument of perigee are undefined in

this GEO case due to both 0 eccentricity and inclination. Lastly, the true anomaly

varies with time over a full revolution of the orbit. This specific orbital profile was

chosen for this research as it is a strategically important orbit for many critical space
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assets that could benefit from satellite servicing [1]. A GEO mission also makes

teleoperation from the ground more difficult due to latency and involves a worksite

that is inaccessible to humans [1]. Additionally, the characteristics of GEO enable use

of the Clohessy-Wiltshire simplified model of relative orbital motion, which is further

detailed in Section 2.1.2.2 below.

2.1.2 Relative Orbital Motion

The previous section presents a method for describing an individual satellite with

respect to a celestial body. However, when studying the motion of two or more

satellites in close proximity orbiting the same celestial body it can be much simpler

to analyze their motion relative to each other. The following sections present an

alternative reference frame and relevant assumptions for the use of a classical set of

linear equations of relative orbital motion.

2.1.2.1 Local Vertical, Local Horizontal Frame

Instead of using the ECI frame to independently analyze the orbital motion of

both a client and a servicer as individual satellites, the Local Vertical, Local Hori-

zontal (LVLH) frame is often used to describe the relative motion of two neighboring

satellites [11]. Within the literature on relative orbital motion, the client satellite

is also referred to as the chief and the servicer satellite is referred to as the deputy

[6]. The origin of the LVLH frame is at the center of mass of the chief, the x-axis

points outward along the orbit’s radius, the z-axis is perpendicular to the chief’s or-

bital plane in the direction of the orbital angular momentum vector, and the y-axis

completes the right-handed coordinate system [11]. For a circular orbit, the y-axis

points in the direction of the chief’s velocity vector.
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Figure 2: Local Vertical, Local Horizontal Reference Frame [11]

2.1.2.2 Clohessy-Wiltshire Equations of Motion

The Clohessy-Wiltshire (CW) equations of relative orbital motion were developed

in the 1960s to analyze spacecraft rendezvous scenarios [8]. The CW equations are

written in the LVLH frame and are linearized about the origin with the assumption

that the chief’s orbit is circular and that the deputy’s orbit is only slightly elliptic.

To maintain fidelity, the distance between the chief and the deputy must remain

sufficiently small compared to the distance between the chief and the Earth. The

satellite servicing scenarios investigated in this research remain within 10 km, and a

semi-major axis in excess of 40,000 km at GEO satisfies this requirement. The CW

equations are given below

ẍ = 3n2x+ 2nẏ, (1)

ÿ = −2nẋ, (2)

z̈ = −n2z, (3)

where x is the radial component, y is the in-track component, and z is the cross-

track component. The mean motion of the chief is defined as n =
√
µ/a3 where µ is

the standard gravitational parameter and a is the semi-major axis of the orbit. The
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formulation of the CW equations above reveals that the radial and in-track (x and y

axes) components are coupled, but the cross-track (z-axis) component is decoupled

and can be solved independently. This enables the study of the translational behavior

of relative satellite motion where the satellites are essentially restricted to the orbital

plane with only two degrees of freedom (2-DOF).

2.1.2.3 Free-Flying Model

A further simplified model of relative orbital motion can be made by discarding

negligible terms in the CW equations. At GEO, the mean motion is small relative

to the acceleration terms and can be ignored over sufficiently short time periods [10].

When the mean motion terms are removed from the equations of motion, the model

essentially reduces to a double integrator as shown below

ẍ = ax =
Fx
m
, (4)

ÿ = ay =
Fy
m
, (5)

z̈ = az =
Fz
m
, (6)

where each acceleration term can be simply described by the control force acting along

each axis and the mass of the servicer given by m. This double integrator (DI) style

model is also known as a free-flying model [12]. This linearized model can then be

used as an approximation for rapid trajectory generation for close proximity servicing

maneuvers that occur over the course of minutes.

2.1.3 3-DOF Formulation

A few restrictions must be made to accurately demonstrate the behavior of a satel-

lite on a ground-based platform with a reduced number of degrees of freedom (DOF).
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A satellite in orbit has six DOF (three translational DOF and three rotational DOF),

but the wheeled robot used in this research has only three DOF (two translational

DOF and one rotational DOF). The following sections show how the satellite motion

can be reduced to a 3-DOF problem.

2.1.3.1 Planar Movement

The CW equations above in Section 2.1.2.2 show how the radial and in-track (x

and y) components are decoupled from the cross-track (z) component of accelera-

tion. Therefore, control can be freely applied in the radial and in-track directions

without affecting the cross-track position. This is convenient as the satellite motion

can be analyzed with only two translational DOF while no force is applied in the z

component:

ẍ =
Fx
m
, (7)

ÿ =
Fy
m
, (8)

z̈ = 0. (9)

2.1.3.2 Angular Movement

Although a satellite has three rotational DOF (roll, pitch, and yaw), the wheeled

robot can only rotate along the axis perpendicular to the ground for a total of one

rotational DOF. Therefore, the satellite is only controlled about the z-axis for rotation

that is perpendicular to the two axes of planar movement in the two translational

DOF formulation above in Section 2.1.3.1. The angular acceleration is given by

θ̈ =
τ

Iz
, (10)
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where τ is the control torque, and Iz is the servicer’s moment of inertia about the

cross-track (z) axis. No control torque is applied along the radial or in-track axes,

and it is assumed that the satellite maintains orientation about those axes.

2.1.3.3 State Dynamics

With the translational and rotational equations of motion defined above, the com-

plete state dynamics for the satellite in 3-DOF are given as

ẍ = 3n2x+ 2nẏ +
Fx
m
, (11)

ÿ = −2nẋ+
Fy
m
, (12)

θ̈ =
τ

Iz
, (13)

where Fx and Fy are the components of the control force in the radial and in-track

directions given by

Fx = F cos (θ), (14)

Fy = F sin (θ). (15)

In Equations (11) and (12), m is the mass of the servicer, τ is the control torque,

and Iz is the servicer’s moment of inertia about the cross-track (z) axis. The thruster

is assumed to be aligned with the center of mass so that its force does not cause a

torque. The mass and moment of inertia are assumed to remain constant, but the

results of different servicers with different physical characteristics are presented in
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Chapter IV. The linearized state-space representation is written as

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 0 0 0 0


x +



0 0 0

0 0 0

0 0 0

1
m

0 0

0 1
m

0

0 0 1
Iz


u, (16)

where the state and control vectors are defined as

x =
[
x, y, θ, ẋ, ẏ,θ̇

]T
, (17)

u = [Fx, Fy, τ ]T . (18)

2.2 Mobile Robot Kinematics

The previous section explained how satellite motion can be reduced to a 3-DOF

problem for implementation on a ground-based platform. However, mobile-robots

have additional unique features and constraints that must be reconciled. Additionally,

a robot that is designed to represent the motion of a satellite must have an appropriate

degree of maneuverability. The following subsections introduce relevant reference

frames, concepts of robot maneuverability, and the equations of motion of a three-

wheeled omnidirectional platform.

2.2.1 Global and Local Reference Frames

The definition of the mobile robot’s equations of motion begins with the definition

of an inertially fixed reference frame. The global reference frame is defined by forming

an arbitrary inertial basis with the axes XI and YI from some origin O [13]. The
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position of the robot is defined by a reference point P on the robot, and the local

reference frame is formed by a basis of XR and YR from P in plane with the global

frame, as shown in Figure 3 below.

Figure 3: Mobile Robot aligned with a global axis [13]

Positions within the global reference plane relative to the origin are shown as ξI

in Equation (19), and positions within the robot’s local reference plane are shown as

ξR in Equation (20) below:

ξI =

xI
yI

 , (19)

ξR =

xR
yR

 . (20)

With the angular difference between reference frames given by θ as shown in
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Figure 3, positions can be mapped from the global to local reference frame by

ξR = R (θ) ξI (21)

using an orthonormal rotation matrix:

R(θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 . (22)

The kinematics of a mobile robot combine the motion of each wheel up to the

motion of the full chassis in its local reference frame. The motion of the robot in its

local reference frame can be mapped back to the global reference frame by

ξ̇I = R (θ)−1 ξ̇R (23)

using the inverse of the rotation matrix in Equation (24):

R (θ)−1 =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (24)

Further, if the origin O is chosen as a reference point of another neighboring robot,

the global reference frame resembles the LVLH frame used for relative orbital motion

described above in Section 2.1.2.1.

2.2.2 Wheel Constraints

The kinematic model of a mobile robot chassis depends on the constraints imposed

by the individual wheels [13]. The type of wheel used and the way it is installed in

relation to the chassis imposes unique rolling and sliding constraints for each wheel.
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The rolling constraint relates the wheel spin to the produced motion in the direction

of the wheel plane and the sliding constraint constrains motion orthogonal to the

wheel plane. In the case of the fixed standard wheel, the rolling constraint enforces

the amount of wheel spin to be equal to the motion in the direction of the wheel

plane, and the sliding constraint enforces zero motion orthogonal to the wheel plane.

The fixed standard wheel rolling constraint is shown in Equation (25) and the fixed

standard wheel sliding constraint is shown in Equation (26) below [13]:

[sin (α + β)− cos (α + β) (−l) cos (β)] ξ̇R − rφ̇ = 0, (25)

[cos (α + β) sin(α + β) (l) sin (β)] ξ̇R = 0, (26)

where the position of the wheel is defined by the distance from the local reference

frame origin, l, and the angle α, while the orientation of the wheel plane relative to

the chassis is given by angle β as shown in Figure 4 [13]. Further, the change in wheel

spin is defined by φ̇ while the wheel radius is defined by r.

Figure 4: Fixed Standard Wheel Parameters [13]
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Another type of wheel commonly used in mobile robotics is the Swedish wheel [13].

The Swedish wheel is similar to a fixed standard wheel but with rollers attached along

the perimeter of the wheel at an angle of γ between the main wheel plane and axis of

rotation of the rollers as shown in Figure 5. The Swedish wheel rolling constraint is

shown in Equation (27), and the sliding constraint is shown in Equation (28) below

[13]:

[sin (α + β + γ)− cos (α + β + γ) (−l) cos (β + γ)] ξ̇R − rφ̇ cos(γ) = 0, (27)

[cos (α + β + γ) sin(α + β + γ) (l) sin (β + γ)] ξ̇R − rφ̇ sin (γ)− rswφ̇sw = 0, (28)

where rsw is the radius of the roller and φ̇sw is the rate of the roller spin [13]. The

roller is allowed to spin freely, so orthogonal motion is no longer constrained to zero,

which enables the Swedish wheel to move omnidirectionally.

Figure 5: Swedish Wheel Parameters [13]

In this research, the 90 degree Swedish wheel variant is used where the rollers spin

perpendicular to the main wheel plane so that the roller axis of rotation is parallel to
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the wheel plane. In this case, γ =  degrees and the rolling and sliding constraints of

Equations (27) and (28) reduce to [13]:

[sin (α + β)− cos (α + β) (−l) cos (β)] ξ̇R − rφ̇ = 0, (29)

[cos (α + β) sin(α + β) (l) sin (β)] ξ̇R − rswφ̇sw = 0, (30)

where the rolling constraint is the same as the fixed standard wheel in Equation (25),

but the sliding constraint includes the free spinning roller. The addition of orthogonal

motion due to the modified sliding constraint adds another degree of freedom to the

Swedish wheel over the fixed standard wheel.

2.2.3 Robot Maneuverability

A robot’s maneuverability is defined by its controllable degrees of freedom, which

come from the degrees of mobility and degrees of steerability of its wheels [13]. As

an example, Figure 6 shows a differential drive robot with two fixed standard wheels

and an omnidirectional wheel. This mobile robot has two degrees of mobility from

its wheels. While the robot only has two controllable degrees of freedom, it has three

degrees of freedom within its workspace. The difference is subtle, but important. The

robot can reach any point in x and y at an angle θ, but it cannot arrive at any point x

and y with any given θ. As shown in Figure 6, due to the limited controllable degrees

of freedom, the paths available to achieve a given pose are constrained.

An alternative robot configuration with three omnidirectional wheels is shown in

Figure 7. This robot’s wheels yield three degrees of mobility due to their orientation

and ability to move orthogonally. This robot is able to directly control its velocity in

x, y, and θ.

The number of independently achievable velocities is also known as a robot’s dif-

ferential degrees of freedom (DDOF) [13]. When a robot’s DDOF equals its workspace
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Figure 6: Constrained Maneuverability [13]

DOF it is known as a holonomic robot. In the case of a holonomic robot’s workspace

with DOF = DDOF = , the robot is known as an omnidirectional robot. An om-

nidirectional robot is able to maneuver to any position in its workspace without

changing its orientation, which is useful in replicating the motion produced by the

satellite dynamics in Section 2.1.

2.2.4 Equations of Motion

The platform selected for use in this research is a three-wheeled omnidirectional

robot. Each wheel is separated by 120 degrees and is located a distance of L from the

center. A geometric representation of the platform is shown below in Figure 8 [14].

The velocities of the mobile robot with respect to its local reference frame are

given as Vx, Vy, and w. The individual wheel velocities are given as V, V, and V.

Wheel velocities can be produced from local velocities by the following system of
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Figure 7: Omnidirectional Motion [13]

kinematic equations [15]:
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 . (31)

If the orientation θ of the velocity vector v with respect to its local frame as shown

in Figure 8 is fixed as θ = π


so that V remains parallel with Vx, Equation (31) reduces

to 
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 . (32)

Equation (32) can then be used to find the necessary wheel velocities to produce
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Figure 8: Three-wheeled omnidirectional robot geometry [14]

a desired velocity.

22



www.manaraa.com

2.3 Optimal Control Methods

Optimal control involves finding a control law that minimizes a specified objective

function while satisfying defined constraints [16]. Optimal control is notably useful in

satellite applications due to its ability to find flight trajectories that minimize time or

fuel used [17]. Constraints in the optimal control problem can also be used to enforce

safety measures such as keep-out zones and control limits. A generic optimal control

problem formulation is given as

min
tf ,u

gb (x (tf )) +

∫ tf

t0

gi (x (t) , u (t)) dt (33)

subject to the following: for all t ∈ [t0, tf ],

ẋ (t) = f (t, x (t) , u (t)) , (34)

u (t) ∈ U (t) , (35)

x(t) ∈ X(t), (36)

x(t0) = x0, (37)

x(tf ) = xf , (38)

where the objective function in Equation (33) has a terminal cost component given

by gb and a running cost component in the integrand given by gi [17]. The state of

the system is given by x, the control input is u, and time is t. The state dynamics are

defined by f , and the sets of admissible control and state values are given by U and X.

Initial and final states are given by x0 and xf . The following sections present the com-

ponents of an optimal control problem and also introduce a commercial optimization

solver as a tool to numerically solve for optimal control solutions.
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2.3.1 Objective Functions

The objective functional of an optimal control problem defines the quantity to be

minimized. Two common types of optimal control problems are the minimum-time

and the minimum-control-effort problems. In a minimum-time problem, the objective

function is given simply as

J = tf (39)

where the extremal trajectory satisfies the terminal conditions in minimum time [16].

According to Pontryagin’s Minimum Principle, this extremal trajectory uses maxi-

mum control authority [16]. In spacecraft applications it is also often important to

conserve fuel due to finite on-board fuel limitations. To conserve fuel, the minimum-

control-effort problem objective functional is given as

J =

∫ tf

t0

‖u(t)‖2 dt. (40)

2.3.2 Constraints

There are various constraints that can be used in the formulation of an optimal

control problem to enable visual inspection of a point of interest on a client satellite

while maintaining a safe distance. The first two presented below are control con-

straints where the servicer is assumed to have a maximum thrust force Fmax and

torque τmax defined by Equations (41) and (42):

F ∈ [0, Fmax], (41)

|τ | ≤ τmax. (42)

Next, a keep-out zone in the form of an ellipsoid can be used to enforce a safety

constraint for collision avoidance [5, 18]. Since the problem has been reduced to
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two translational DOF, a circle can be used to model the ellipsoid in the form of

Equation (43) where RKOZ is the radius of the keep-out circle, x and y are the

position coordinates of the servicer at time t, and the circle is centered around the

position of the client satellite at the origin:

R2
KOZ ≤ x (t)2 + y (t)2 (43)

for all t ∈ [t0, tf ].

Further, the problem can be constrained by the following terminal conditions to

reach a desired end state:

R2
G ≥ (xf )

2 + (yf )
2 , (44)[

ẋf , ẏf , θ̇f

]
= [0, 0, 0] . (45)

where Equation (44) has the servicer end within a desired distance from the client

given by RG and Equation (45) has the servicer end at relative rest.

2.3.3 GPOPS-II

Real-world problems often have nonlinearities that make solving an optimal con-

trol problem with indirect methods through the use of the calculus of variations or

other classical methods intractable. Therefore, numerical methods are often used to

solve this class of problem that may not have an analytical solution. GPOPS-II is

a commercial solver that uses variable-order gaussian quadrature methods to numer-

ically solve an optimal control problem that is approximated as a sparse nonlinear

programming (NLP) problem [9]. The solver returns the optimized value of the ob-

jective function as well as the time, state, and control information at each collocation

point of the solution. While the resulting solution is an open loop solution to the
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optimal control problem, its implementation as a component of both an open loop

controller and a closed loop controller is detailed in Chapter III.

2.4 The Robot Operating System

The Robot Operating System (ROS) is a flexible Linux-based framework for writ-

ing robotics software that provides a collection of tools and libraries to simplify the

task of creating complex and robust robot behavior [19]. As a key feature of ROS is

collaborative development, The ROS Wiki1 is the primary resource for information on

ROS distributions, features, tools, and packages. A detailed look at the specific ROS

network setup used in this research is included in Chapter III, but a brief overview of

the features of ROS relevant to this research is introduced in the following sections.

2.4.1 ROS Nodes and Topics

At its most basic level, ROS implements a system of nodes that communicate

asynchronously with information in messages [19]. Messages are transmitted via

unique topics that identify a specific message and its data type. Nodes can either

publish or subscribe to a topic to send or receive the message data, respectively. A

few particularly helpful ROS command-line tools for navigating and understanding

the ROS nodes and messages of a network are shown in Table 1.

Table 1: Common ROS Commands

user@hostname$ rosnode list
user@hostname$ rosnode info [node]
user@hostname$ rostopic list
user@hostname$ rostopic type [topic]
user@hostname$ rostopic echo [topic]
user@hostname$ rosrun rqt graph rqt graph

1For documentation, tutorials, and the latest ROS distributions, visit http://wiki.ros.org/
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As expected, rosnode list shows all of the active nodes on the network while

rosnode info gives details of the node including the topics it subscribes to and

publishes. Next, rostopic list outputs the topics in the same way as rosnode

list, and rostopic type gives the message data type of the topic. The current

actual message data of a topic can be output with rostopic echo. Lastly, rosrun

rqt graph rqt graph produces a visual graph of the flow of data within the ROS

network via its active nodes and topics. For example, a simple publisher node and

subscriber node relationship is shown via rqt graph in Figure 9.

Figure 9: ROS rqt graph

In Figure 9, the /teleop turtle node is publishing the /turtle1/cmd vel topic, and

/turtlesim is subscribing to the topic. In this example, a turtle is being driven by a

velocity command sent from a terminal running the teleoperation node. Turtlesim

is a package included in the basic ROS tutorials and is further introduced in the

following section on packages and services.

2.4.2 ROS Packages and Services

Software in ROS is organized into units called packages, which include the docu-

mentation, nodes, custom message definitions, and executable scripts required to im-

plement the functionality of the package [19]. Package scripts can be run with rosrun

<package> <executable>. In the turtlesim example introduced in Section 2.4.1,

the simulation can be started by running rosrun turtlesim turtlesim node, which

initializes the simulator graphical user interface (GUI) along with its ROS nodes and

topics as shown in Figure 10.
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Figure 10: ROS Turtlesim Example

ROS packages can also include services, which implement behaviors that can be

called over the ROS network. Services are primarily written in Python or C++ using

the rospy or roscpp libraries. Available services on the ROS network can be listed

with rosservice list and called with rosservice call /<service-name> [service-

args]. In the turtlesim example, services are used to add or remove turtles from the

simulation with spawn or kill and the simulation can be restarted with reset.

The wide range of packages developed by the ROS community that implement

many commonly-used robotics tools and behaviors is one of the powerful features of

ROS. The specific ROS packages and features used in this research are introduced in

further detail in Chapter III.

2.5 Chapter Summary

This chapter introduces the main background concepts that enable the develop-

ment of a 3-DOF mobile robotic hardware testbed for satellite proximity controls

research. The demonstrated satellite behavior is based on the CW linearized equa-

tions of relative motion and is bound by the same assumptions as introduced in

Section 2.1. The concepts of satellite dynamics of Section 2.1 and optimal control
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methods of Section 2.3 are used in the design of the satellite control system in Chap-

ter III. The following chapter also uses the mobile robot kinematics of Section 2.2 in

the design of the robotic hardware and the robot operating system of Section 2.4 in

the design of the testbed network.
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III. Methodology

This chapter describes the testbed framework including the mobile robot hard-

ware, the motion capture system, the Robot Operating System (ROS) network setup,

and the control simulation. The intent of the framework is to provide a flexible plat-

form for a user to test their own unique control scheme for their specific mission

scenario. Section 3.1 introduces the hardware involved in the research, including the

mobile robot and the motion capture system. Section 3.2 details the ROS network

setup and computing environment that runs the testbed. Section 3.3 then describes

the example satellite control simulation that is provided in-place of a user supplied

controller for this research.

3.1 Hardware Systems

The two main hardware systems utilized in this research are the mobile robot

and the motion capture system. The mobile robot is the omni wheel variant of the

TurtleBot3 by Robotis1 and the motion capture system is a set of eight VICON

MX-F40 infrared cameras by Vicon Motion Systems2.

3.1.1 Mobile Robot

The Turtlebot platform is marketed as a low-cost, personal robot kit with open-

source software. Various versions have been developed since the original Turtlebot

was released in 2010, as shown in Figure 11. The most recent release, the Turtlebot3,

was released in 2017 with a Burger and a Waffle configuration. The Turtlebot3 Waffle

originally included an Intel Joule, but was discontinued and replaced by a Raspberry

Pi 3 with the Waffle Pi release. The Turtlebot3 Waffle Pi kit was used to build the

1For more information on the TurtleBot, see https://www.turtlebot.com/about/
2For more about Vicon Motion Systems, see https://www.vicon.com/
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mobile robot platform in this research and includes the chassis components, servo

motors, wheels, two on-board computers, and a lithium-ion polymer (LiPo) battery.

The core components3 of the standard Waffle Pi configuration are listed in Table 2

and are further detailed in the following sections.

Figure 11: Turtlebot versions, from turtlebot.com

Table 2: Turtlebot3 Waffle Kit Core Components

Type Item Quantity
Chassis Component Standard Waffle-Plate 24

Servo Motor DYNAMIXEL XM420-W210-T 2
Wheels Standard Circular Wheel + Tire 2
Wheels Ball Caster 2

On-board Computer Raspberry Pi 3 Model B+ 1
On-board Computer OpenCR1.0 1

Battery LiPo 11.1V 1800 mAh 1

The Turtlebot3 documentation also includes 12 alternative configurations known

as Turtlebot3 Friends4 that can be assembled using the Waffle Pi kit and a few

additional components. The standard Turtlebot3 Waffle configuration with two fixed

3See the parts list at https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
4See the documentation at https://emanual.robotis.com/docs/en/platform/turtlebot3/locomotion/
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standard wheels and two ball caster wheels is a nonholonomic robot, as discussed

in Section 2.2. Therefore, the Waffle variant does not have the sufficient degrees of

mobility to follow the required satellite trajectories in the constrained three degrees of

freedom (3-DOF) scenario as presented in Section 2.1. Instead, the Turtlebot3 Omni

variant from the list of Turtlebot3 Friends is used to provide a holonomic platform

with three full degrees of mobility. The Turtlebot3 Omni, also referred to as the

omnibot in this research, uses three omnidirectional Swedish wheels. The Swedish

wheel constraints are introduced in Section 2.2.2, and the wheel is shown in Figure 12

below.

Figure 12: 60 mm Aluminum Swedish Wheel

3.1.1.1 Physical Components

A core component of the Turtlebot3 chassis is the standard waffle-plate. The

waffle-plates are 127mm x 63mm x 9mm injected modeled plates and are designed to

enable the chassis to be assembled5 in a variety of different shapes. The Turtlebot3

Waffle consists of three layers of eight waffle-plates assembled as shown in Figure 13.

5See assembly instructions at https://emanual.robotis.com/docs/en/platform/turtlebot3/hardware setup/
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Figure 13: Waffle-plate Layer Assembly, from Robotis

The omnibot also uses the waffle-plates, but the layers are built from three waffle-

plates attached around a central component. The Computer Aided Designed (CAD)

model6 for the central component is provided by Robotis and a 3D printed copy is

shown in Figure 14.

Robotis also provided CAD models for the servo mounting brackets and the wheel

adapters that were 3D printed locally. Three servo mounting brackets, shown in

Figure 15, are installed on bottom layer of the omnibot to separate each of the

Swedish wheels by 120 degrees and a distance of 115 mm from the center. The wheel

adapters connect the 60mm Aluminum Swedish wheel with the DYNAMIXEL XM430

servo motor, as shown in Figure 16.

Fully assembled, the omnibot uses three layers of waffle-plates and measures at

approximately 190 mm wide, 216 mm long, and 127 mm tall while weighing approxi-

mately 1.2 kg. The omnibot also includes retroreflective markers on the top layer that

6The CAD model is provided at http://www.robotis.com/service/download.php?no=684
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Figure 14: Turtlebot3 Omni Layer

assist the motion capture system, which will be further introduced in Section 3.1.2.

The assembled omnibot is shown in Figure 17.

3.1.1.2 On-board Computers

The omnibot, like the standard Turtlebot3 Waffle Pi, is controlled by two on-board

computers: an OpenCR1.0 board and a Raspberry Pi 3 Model B+. The OpenCR

board is powered by the LiPo battery and the Raspberry Pi is powered by a 5V

output from the OpenCR. The OpenCR and the Raspberry Pi communicate via a

micro-USB cable. Figure 18 shows the OpenCR, Raspberry Pi, and LiPo battery

mounted to the first layer of the omnibot.

The Raspberry Pi runs Raspian, the Raspberry Pi Operating System (OS), which

is a Debian Linux based OS. ROS is installed on the omnibot via Raspian and hosts

a variety of Turtlebot nodes necessary for communication with the rest of the ROS

network, which is further detailed in Section 3.2. The Raspberry Pi includes 2.4GHz

and 5GHz wireless LAN as well as an Ethernet port for network connection. For de-
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Figure 15: Omnibot Servo Mounting Brackets

Figure 16: Swedish Wheel Adapter

bugging the Raspberry Pi, Raspian can be accessed during operation directly via the

on-board HDMI and USB ports or via Secure Shell (SSH). While the Raspberry Pi

communicates with the ROS network, the OpenCR board controls the DYNAMIXEL

servos via connection to each of the three TTL serial ports. The OpenCR also in-

cludes a three-axis gyroscope and three-axis accelerometer for on-board measurement.
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Figure 17: Assembled Omnibot

During debugging, the OpenCR can receive inputs from a remote controller via an

attached BT-410 Bluetooth receiver to control the servos without the Raspberry Pi.

OpenCR is compatible with the Arduino Integrated Development Environment (IDE)

and implements the kinematics introduced in Section 2.2.4 to produce a commanded

local velocity through individual wheel velocities.

3.1.1.3 Simulated Gazebo Model

Gazebo is an open-source robotics simulator included with ROS. A simulated

model of a mobile robot is particularly useful during rapid control code iteration to

discover errors before implementation on hardware. OpenBase7 is an open-source

omnidirectional mobile robot simulated via Gazebo shown in Figure 19. OpenBase

7OpenBase and its documentation are hosted at https://github.com/GuiRitter/OpenBase
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Figure 18: Raspberry Pi and OpenCR boards

can receive control commands via the same ROS topics as the omnibot hardware to

easily swap between simulation and hardware. OpenBase was used throughout this

research for prototyping and to continue development without access to the hardware

in the ANT laboratory.

3.1.2 Motion Capture System

The ANT Lab is outfitted with a motion capture system consisting of eight VI-

CON MX-F40 cameras by Vicon Motion Systems. The VICON system measures the

position on the omnibot to an accuracy of up to one mm to provide true position

data for the controller and for performance analysis. The cameras are arranged along

the walls of the VICON chamber as shown in Figure 20.

37



www.manaraa.com

Figure 19: Gazebo Simulator with OpenBase, by GuiRitter

3.1.2.1 VICON Camera Setup

The VICON cameras are managed by the VICON Tracker software running on a

Windows 10 Desktop PC in the ANT Laboratory. Once the cameras are calibrated,

they are shown in the software matching their physical arrangement as displayed in

Figure 21.

The VICON infrared cameras use passive retroreflective markers to measure po-

sition. The retroreflective markers are arranged in an asymmetrical pattern to define

an object to be tracked as shown on the omnibot in Figure 17. Once defined and

detected by the cameras, the object is displayed in the Tracker software as shown in

Figure 22.

3.1.2.2 VICON Data

VICON data can be output on the ROS Network via the vicon bridge package.

This package creates a ROS node that broadcasts a geometry msgs/TransformStamped

message on the vicon/omnibot/omnibot topic. This message type includes the cur-

rent time stamp, translation, and rotation of the object and is used to calculate the

omnibot pose in the world frame as shown in Figure 23. The x and y values can be
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Figure 20: ANT VICON Chamber

directly read from the translation data, but the θ component is calculated from the

rotation data given in quaternions8. The MATLAB function quat2angle9 is used for

conversion in the controller used in this research, and it returns angles in the range

of ±180 degrees.

8See https://eater.net/quaternions for Sanderson’s visualized explanation of quaternions
9See https://www.mathworks.com/help/aerotbx/ug/quat2angle.html
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Figure 21: VICON Tracker Camera Arrangement

Figure 22: VICON Tracker Omnibot Object
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Figure 23: VICON Example Pose Data
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3.2 Testbed Network

The testbed network uses ROS to connect the ROS Master, the VICON system,

the satellite control simulation, and the omnibot mobile robot platform. The ROS

network enables the necessary data exchange between the four computers involved in

the satellite control demonstration.

3.2.1 Network Overview

A NETGEAR Nighthawk R7000 Dual-Band WiFi router is used to host the

testbed network. The 5Ghz WiFi band is used to connect the omnibot’s Raspberry

Pi to the network to enable untethered movement in the VICON chamber. Connec-

tion via an ethernet cable is also possible. The various equipment in the network

require static IP addresses; therefore, the router is used without Dynamic Host Con-

figuration Protocol (DHCP). The static IP address assignment with a subnet mask

of 255.255.255.0 is given in Table 3.

Table 3: Static IP Address Assignment

Equipment Static IP Address
VICON Camera Tracker System 192.168.10.1
Nighthawk WiFi Router 192.168.10.21
ROS Master on Ubuntu 18.04 Laptop 192.168.10.22
MATLAB on Windows Laptop 192.168.10.23
Turtlebot ROS Node on Raspberry Pi 192.168.10.24

3.2.2 Computing Environment

The following section details the function of each of the networked computers in

their support of the operation of the omnibot. A distributed computing environment

is used per the Turtlebot3 setup requiring a Linux-based PC hosting the ROS network

and ROS Master separate from the Raspberry Pi. An alternative configuration to
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consolidate more of the functionality on-board the omnibot could be achievable, but

it would require a different control simulation or potentially an additional on-board

computer and was not tested in this research.

3.2.2.1 ROS Master

The ROS Master and Parameter Server is hosted on a Dell Precision 7720 Laptop

running Ubuntu 18.04 referred to as the Master Laptop. The Master Laptop is

the central hub that connects the control simulation, the omnibot, and the VICON

motion capture data. Figure 24 shows the three terminals that are active on the

Master Laptop during hardware demonstration.

Figure 24: Master Laptop Active Terminals

The ROS Master is started with roscore, the VICON data is imported into the

ROS network with the VICON bridge via roslaunch vicon bridge vicon.launch,

and an SSH connection is opened with the Raspberry Pi to initialize the Turtlebot3
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package ROS nodes.

Another function of the Master Laptop is running the open base simulation via

Gazebo as introduced in Section 3.1.1.3. Gazebo is particularly useful for rapidly

prototyping new robot behavior and code developments that do not require the full

hardware and laboratory setup. While ROS can be run via a Linux-based virtual

machine on a Windows PC, the Gazebo simulator performance is significantly de-

graded if hosted via a virtual machine. Even with the discrete NVIDIA Quadro

P5000 Mobile graphics card of the Master Laptop, the Gazebo simulated omnidirec-

tional robot model utilized in this research ran at a real time factor of approximately

0.5 to maintain stable performance.

3.2.2.2 VICON Tracker

The VICON Tracker software is installed on an ANT laboratory Windows 10

Desktop PC as introduced in Section 3.1.2. The real-time position of the omnibot is

displayed via Tracker as shown via Figure 21. Hardware tests can also be recorded

via Tracker to record the full position history over the duration of a test. A recording

can then be replayed to the ROS network from Tracker to have the vicon bridge node

outputs replicate a previously performed test for further analysis.

3.2.2.3 MATLAB Control Simulation

The MATLAB satellite control simulation is run on a Microsoft Surface Pro 6 with

Windows 10. MATLAB is used to host the control simulation due to its compatibil-

ity with the GPOPS-II optimal control solver and the MATLAB ROS Toolbox. The

ROS Toolbox enables MATLAB to publish and subscribe to information on a ROS

network, even via a Windows computer. A MATLAB approach was also chosen to

enable further collaboration with others performing controls research via MATLAB
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or Simulink. An alternative controller developed in Python or C++ could also be

implemented as a ROS service without needing MATLAB, but that was not investi-

gated in this research. The MATLAB controller receives timing, pose, and IMU data

via subscription to ROS topics, and publishes a commanded velocity for the omnibot.

The controller is designed to work with either simulated or real hardware, but the

topic names for each setup are different, as shown in Table 4 below. Further details

of the controller algorithm are given in Section 3.3.

Table 4: MATLAB Controller ROS Topics

Simulated Hardware Real Hardware
Timing /clock /vicon/omnibot/omnibot
Pose /open base/pose/world /vicon/omnibot/omnibot
IMU - (N/A) /imu
Velocity Command /cmd vel /cmd vel

3.2.2.4 Raspberry Pi

While the general setup of the Raspberry Pi and connection to the ROS net-

work was introduced in Section 3.1.1.2, this section will cover the software function

and individual ROS nodes. Once a SSH connection is established with the Rasp-

berry Pi, the TurtleBot3 node turtlebot3 core is initialized via roslaunch turtle-

bot3 bringup turtlebot3 robot.launch. The turtlebot3 core node subscribes to

the published velocity command from the MATLAB controller via /cmd vel, which

is then distributed to the individual wheel commands via the connected OpenCR

board. The turtlebot3 core node then publishes gyroscope and accelerometer mea-

surements via /imu and additional sensors not used in this research via /sensor state.

The turtlebot3 core also publishes various diagnostic information via /battery state

and /diagnostics.
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3.3 Satellite Control Simulation

In this section, a satellite control simulation is introduced that commands the

mobile robot through an example satellite inspection scenario to demonstrate the ca-

pabilities of the hardware testbed. The control simulation consists of two parts, the

trajectory generation via optimal control methods and the control algorithm imple-

mented via MATLAB and ROS. The results of implementing this control simulation

via both real and simulated hardware are presented in Chapter IV.

3.3.1 Example Satellite Servicing Scenario

Based on the background presented in Section 1.4 (assumptions), Section 2.1

(satellite dynamics), and Section 2.3 (optimal control), a cooperative satellite inspec-

tion scenario is developed that involves a single deputy satellite inspecting a rotating

chief. The demonstrated component of the inspection involves the final approach of

the deputy, where the deputy begins approximately 10 m from the chief. The goal of

the scenario is for the deputy to reach an ideal distance and alignment to inspect a

point of interest on the chief in minimum time.

The relative orbital motion of the chief and deputy satellites is given by the

Clohessy-Wiltshire (CW) equations in the Local Vertical, Local Horizontal (LVLH)

frame. The inspection scenario is a form of non-contact support and, therefore, does

not include any contact dynamics. The scenario is then constrained by the 3-DOF

capabilities of the mobile robot testbed, which includes two translational degrees of

freedom (DOF) and two rotational DOF. The radial (x) and in-track (y) components

of the relative orbital motion are investigated while the decoupled cross-track (z)

motion is nullified. Rotation about the cross-track axis is implemented as the single

rotational DOF of the testbed, while orientation about the radial and in-track axes

is held constant.
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The deputy satellite begins at an equilibrium point of the CW equations at relative

rest, with an offset from the chief along the in-track axis and all other relative positions

and velocities zero. The chief satellite remains at the origin of the LVLH frame

throughout the scenario while rotating at a constant rate about the cross-track axis.

The guidance of the deputy satellite is constrained by force and torque constraints

of a single thruster and a reaction wheel, as well as a collision avoidance constraint

formulated as a circle around the chief satellite. The goal of the scenario is then given

by four terminal conditions. A desired final position is formulated as being within a

circle around the chief satellite and also being within a cone that originates from a

point of interest on the chief. The cone also rotates along with the chief at a constant

rate. The deputy then ends at relative rest with zero velocity in all 3-DOF while also

pointing towards the chief. The combination of terminal conditions creates an ideal

state for the sensors in this scenario to complete the inspection.
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3.3.2 Time-Optimal Reference Trajectories

To find a time-optimal guidance solution to the scenario presented in Section 3.3.1,

an optimal control problem is formulated in Equations (46) to (55) as

J = tf , (46)

[x0, y0, θ0] = [0, ye, θe] , (47)[
ẋ0, ẏ0, θ̇0

]
= [0, 0, 0] , (48)

F ∈ [0, Fmax], (49)

|τ | ≤ τmax, (50)

R2
KOZ ≤ (x)2 + (y)2 , (51)

R2
G ≥ (xf )

2 + (yf )
2 , (52)

R2
T ≥ (xf −RG cos (φf ))

2 + (yf −RG sin (φf ))
2, (53)

| arctan

(
yf
xf

)
− θf | = π, (54)[

ẋf , ẏf , θ̇f

]
= [0, 0, 0] , (55)

where the objective function is given as Equation (46), the initial state is given as

Equations (47) and (48), the control constraints are given as Equations (49) and (50),

the collision avoidance constraint is given as Equation (51), and the terminal condi-

tions are given as Equations (52) to (55).

3.3.2.1 Scenario Constants

A base configuration of the scenario constants from the CW dynamics in Equa-

tions (11) to (13) and optimal control constraints in Equations (46) to (55) is listed

in Table 5 for the experiments included in the results of Chapter IV.
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Table 5: Scenario Constants Base Configuration

Constant Name Variable Value
Chief Mean Motion n 7.2921e-05 1/s
Deputy Mass m 100 kg
Deputy Moment of Inertia Iz 16.67 kg·m2

Deputy equilibrium point (in-track) ye 10 m
Deputy equilibrium point (orientation) θe

π
2

rad
Maximum Thrust Force Fmax 1 N
Maximum Torque τmax 1 N·m
Collision Avoidance Radius RKOZ 2 m
Goal Distance Radius RG 5 m
Cone Approximation Radius RT 1 m

3.3.2.2 GPOPS-II Settings

The commercial optimization solver GPOPS-II introduced in Section 2.3.3 will be

used to solve the optimal control problem formulated in Section 3.3.2 for the time

optimal trajectory. IPOPT was used as the nonlinear programming (NLP) solver.

Default settings for GPOPS were used except for the mesh tolerance was tightened

to 1e-6 and the maximum mesh iterations were increased to 20. A single-phase

formulation in GPOPS was possible for this scenario, but a multi-phase approach

could be used to demonstrate more complex scenarios with this same setup in future

research.

3.3.3 Control Algorithm

The control algorithm in Algorithm 1 is used to command the mobile robot to

follow the time-optimal reference trajectories found in Section 3.3.2. This process

involves using waypoints along the trajectory to guide the mobile robot to the goal.

However, it is not sufficient for the purpose of this research for the mobile robot to

simply follow the positions along the trajectory according to its own limits with a

response tuned to the specific hardware, as it would with a proportional-integral-
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derivative (PID) or linear-quadratic regulator (LQR) based controller. Instead, it

should replicate the kinematics of the deputy satellite as if it was in its orbital envi-

ronment. Therefore, the waypoints of the trajectory are primarily based on time to

ensure the motion throughout the trajectory remains synchronized with the timing

of the optimal control solution.

Algorithm 1 Open Loop Controller

1: function cmdvelwpol(hardware, vel wp)
2: for i← 1, length(vel wp) do . Loop over waypoints
3: ẋ des, ẏ des, θ̇ des← vel wp(i) . New waypoint velocity
4: while time < vel wp(i, 1) do . Until next waypoint
5: time, x, y, θ ← vicon bridge . Get current pose
6: ẋ, ẏ, θ̇ ← dirty derivative . Calculate current velocity
7: vel cmd← coord transform . To local robot reference frame
8: ros publish(vel cmd) . Send velocity command
9: end while

10: end for
11: end function

The time and velocity components of the trajectory from the GPOPS solution is

stored in the r-by-4 vector vel wp, where r is the number of collocation points from

the GPOPS solution. Column 1 of the vector is the timing of the waypoint, where

Columns 2 through 4 are the x, y, and theta components of the deputy’s velocity at

each waypoint as shown in Equation (56). During each iteration of the control loop

commanding the mobile robot to the next waypoint, navigation is performed via data

from the motion capture system and velocity commands are processed and sent to

the mobile robot.

vel wp =


t0 ẋ0 ẏ0 θ̇0
...

...
...

...

tf ẋf ẏf θ̇f

 (56)
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3.3.3.1 Motion Capture Navigation

The VICON motion capture system introduced in Section 3.1.2 is used to per-

form the navigation component of the demonstration. The world frame position

information is measured via the vicon bridge function on Line 5 of Algorithm 1.

The measured pose throughout the demonstration is then compared to the optimal

control solution to analyze the performance of the testbed.

Although the vicon bridge only provides the position information, the mobile

robot velocity at each measurement can be calculated via a band-limited, or dirty

derivative [20]. The discrete time dirty derivative used on Line 6 of Algorithm 1 is

given as

uD [n] =

(
2σ − Ts
2σ + Ts

)
uD [n− 1] +

(
2

2σ + Ts

)
(e [n]− e [n− 1]) (57)

where σ is small, and 1
σ

is the bandwidth of the differentiator in radians per second

[20]. In Equation (57), n is the the sample, Ts is the sample period, and in this

research the error signal, e, is used as the difference between the current and previous

position measurements. The calculated velocities are then compared to the optimal

control solution velocities throughout the trajectory.

3.3.3.2 Open Loop Velocity Commands

In the open loop method of Algorithm 1, desired world frame velocities for each

waypoint are taken from vel wp as shown in Equation (56). The world frame velocities

are then converted to the mobile robot local frame using the orthogonal rotation

matrix shown in Equation (22) via coord transform on Line 7 of Algorithm 1.

The local frame velocities in vel cmd are then published to the /vel cmd topic on

the ROS network using ros publish on Line 8 to command the mobile robot via its
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on-board computers as mentioned in Section 3.2.2.4.

3.3.3.3 Closed Loop Velocity Commands

An alternative closed loop method is shown in Algorithm 2, where the pose infor-

mation of each waypoint is included via the r-by-4 vector pose wp in Equation (58),

which shares the same dimensions as the vel wp vector.

pose wp =


t0 x0 y0 θ0
...

...
...

...

tf xf yf θf

 (58)

Algorithm 2 Closed Loop Controller

1: function cmdvelwpcl(hardware, vel wp, pose wp)
2: for i← 1, length(vel wp) do . Loop over waypoints
3: x des, y des, θ des← pose wp(i) . New waypoint pose
4: ẋ des, ẏ des, θ̇ des← vel wp(i) . New waypoint velocity
5: while time < vel wp(i, 1) do . Until next waypoint
6: time, x, y, θ ← vicon bridge . Get current pose
7: ẋ, ẏ, θ̇ ← dirty derivative . Calculate current velocity
8: vel correction← calc feedback . Feedback error signal
9: vel cmd← coord transform . To local robot reference frame

10: ros publish(vel cmd) . Send velocity command
11: end while
12: end for
13: end function

Algorithm 2 then uses the calc feedback function in Line 8 to calculate the

feedback error signal with a linear interpolation

PC = PA +

(
tC − tA
tB − tA

)
(PB − PA) (59)

where the expected current position, PC , is estimated based on the time elapsed

between the previous and next waypoints. In Equation (59), PA and tA are the pose

52



www.manaraa.com

and time of the previous waypoint, PB and tB are the pose and time of the next

waypoint, and tC is the current time of the demonstration. The vel correction vector

is then calculated based on the error between the expected and actual position and

added to the vel cmd vector to correct for that error.

3.4 Chapter Summary

This chapter presents the overall framework of the 3-DOF satellite proximity oper-

ations hardware testbed. The simulated and real omnibot mobile robot hardware con-

figurations are presented in Section 3.1.1, and results from tests of each are compared

in Chapter IV. Section 3.2 includes an overview of the four computers that exchange

data over the ROS network, including the computers handling the ROS Master, the

VICON tracker software, the MATLAB control simulation, and the Turtlebot Nodes.

The satellite control simulation of Section 3.3 introduces the optimal control formula-

tion for the guidance trajectory generation, the implementation of the motion capture

navigation, and the algorithms for both open and closed loop controllers. The results

of testing the open and closed loop controllers on variations of the example satellite

servicing scenario of Section 3.3.1 are analyzed in Chapter IV.
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IV. Results and Analysis

This chapter presents the performance of the omnibot demonstrating a component

of a satellite servicing inspection scenario. The background and methodology for the

specific demonstration scenario is given in detail in Sections 2.1 and 3.3. A narrative

description of the scenario is provided in Section 3.3.1. The results of demonstrating

seven reference trajectories with varying chief initial conditions, state dynamics, and

deputy physical characteristics are compared using simulated and real hardware, as

well as using open and closed loop controllers. The results are presented to showcase

the capabilities of using the testbed to analyze the behavior of a controller in a given

example satellite servicing scenario.

4.1 Scenario Map Overview

While a narrative description of the test scenario with initial conditions, con-

straints, and terminal conditions is presented in Section 3.3.1, a graphical depiction

of the scenario is shown in Figure 25.

The scenario map of Figure 25 represents the Local Vertical, Local Horizontal

(LVLH) frame with the chief satellite designated by * at the origin. The collision

avoidance constraint, or keep out zone (KOZ), is shown by the red circle around the

chief with a radius of 1 m. The blue circle around the chief with a radius of 5 m

is the goal distance for the deputy satellite. The region between the two concentric

circles is a component of the terminal state. The other position component of the

terminal state is to end within the cone designated by the two dark blue dashed lines

coming from the chief. The green circle is used to approximate a target within the

cone that is centered on the goal distance to simplify the constraints. Therefore, the

final terminal position constraint is being within both the goal and cone target circles
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Figure 25: Scenario Map Initial

simultaneously. The deputy is represented as an X with a red arrow designating the

orientation of the satellite and direction of thrust.

Throughout the trajectory, the collocation points from the GPOPS optimal control

solver are represented by black circles, and the orientation of the deputy at each

collocation point is represented by a magenta arrow, as shown in Figure 26. As the

chief rotates at a constant rate in most of the test scenarios, a dashed circle is placed

at the initial location of the cone target for reference, in cyan. The initial position of

the deputy at the equilibrium point of the CW equations is also marked by a green

X for reference.
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Figure 26: Scenario Map in Progress

4.2 Test Cases

This section analyzes the results of seven unique test cases that are formed from

varying initial conditions of the optimal control problem in Section 3.3.2. The base

configuration of the constants used in the tests cases is found in Table 5 of Sec-

tion 3.3.2.1. The default for each test is the base configuration unless otherwise

mentioned. While the scenario maps depict an area of 15 x 15 meters, the Autonomy

and Navigation Technology (ANT) Center VICON chamber is not that large, so a

scaling factor is introduced for the hardware tests that scales the optimal control

solutions down by a factor to fit the smaller space and scales the results back up

for comparison to the original trajectory. A one-tenth scaling factor is used for the

hardware demonstrations unless otherwise mentioned.

Test Case 1 involves a stationary chief that remains at the origin of the LVLH

frame without any rotation. Test Cases 2 and 3 introduce a constant rotation rate

of 2 degrees per second for the chief. Test Case 2 has the chief starting at an initial
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Table 6: Seven Test Cases

Case Chief Initial Chief Rate Dynamics Mass
1 −π/2 rad 0 deg/s CW 100 kg
2 −π/2 rad 2 deg/s CW 100 kg
3 0 rad 2 deg/s CW 100 kg
4 −π/2 rad 2 deg/s DI 100 kg
5 0 rad 2 deg/s DI 100 kg
6 0 rad 2 deg/s CW 200 kg
7 0 rad 2 deg/s CW 50 kg

orientation of −π/2 radians, while the chief in Test Case 3 starts with an orientation

of 0 radians. Test Cases 4 and 5 then use the same initial conditions as Test Cases 2

and 3 but use double integrator dynamics instead of the default state dynamics given

by the Clohessy-Wiltshire (CW) equations of motion. The difference in trajectories

between Test Cases 2 and 4 highlights the effect of the alternate dynamics. Finally,

Test Cases 6 and 7 show the ability of the testbed to demonstrate the motion of a

deputy satellite with different physical characteristics, such as mass.

For brevity, figures are provided within the following sections only when demon-

strating unique concepts or behaviors of the testbed. Therefore, the bulk of the anal-

ysis is concentrated in the first three test cases, discussed in Sections 4.2.1 to 4.2.3.

However, all output figures for all seven test cases are included for reference in Ap-

pendices A through G.

4.2.1 Test Case 1: Stationary Chief

The first demonstration trajectory is generated using a stationary chief with an

initial orientation of −π/2 radians. In this scenario, the cone target is directly in front

of the deputy. This simple case is presented to highlight the common behaviors of the

GPOPS solutions, the robot simulation, and the actual hardware that are common

throughout the more complex trajectories. The deputy primarily has to accelerate
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forward along the radial axis, rotate to reverse the direction of thrust, and then

decelerate to achieve the terminal position. The time-optimal trajectory generated

by GPOPS is shown in Figure 27.

Figure 27: Test Case 1 Optimal Solution: Trajectory

However, since the deputy satellite only has one thruster fixed to its back, the

time-optimal trajectory involves maximum thrust towards the target for the first half

of the trajectory and then turning and thrusting away from the target final position

with maximum thrust to reach relative rest with respect to the chief. The following

control plots in Figure 28 show the thrust and torque commands for the deputy.

This behavior of applying maximum positive thrust followed by maximum negative

thrust is a common behavior of time-optimal control due to Pontryagin’s Maximum

(or Minimum) Principle [16]. This type of control is also referred to as bang-bang
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Figure 28: Test 1 Optimal Solution: Control

control due to the abrupt change between maximum applications of force, with this

specific case representing a bang-off-bang pattern due to the pause occurring around

20 seconds into the trajectory [16]. The pause between the two applications of maxi-

mum thrust is due to the rotation of the deputy as it reorients to decelerate. Evidence

of bang-bang control is also found in the state velocities, as shown in Figure 29.

As the terminal position is primarily offset from the initial position along the

in-track (y) axis, the thrust is mainly applied when the deputy is aligned with the

in-track axis. This results in the inverted V-shaped curve shown in Figure 29 where

the in-track velocity (Vy) is rising and falling at a constant rate due to the constant

acceleration from maximum force. The flat top of the Vy curve aligns with the pause

in thrust during rotation. The full set of figures for the optimal solution is shown in

Figure 30

Test Case 1 is then implemented on an omnidirectional mobile robot in simulation

using open base as discussed in Section 3.1.1.3. Figure 31 shows the results of testing
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Figure 29: Test 1 Optimal Solution: State Velocities

the open loop controller in Algorithm 1 of Section 3.3.3.2. While the simulated robot

finishes close to the terminal position and at relative rest, the orientation error is

significant. Figure 31c shows the x position error, Figure 31e shows the y position

error, and Figure 31g shows the theta orientation error.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 30: Test 1 time optimal solution, as computed using the GPOPS solver.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 31: Test 1 simulated open loop control compared to the optimal control tra-
jectory in Figure 30
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While a large contributing factor for the orientation error is due to an error1 with

θ in the current version of the open base simulation, it highlights the shortcomings of

the open loop controller. Any error introduced throughout the trajectory accumulates

and is not corrected. The state velocities are also shown in Figures 31d, 31f and 31h.

It is important to note that the scale of the x values for position and velocity are

almost one-tenth of the y values due to the limited motion in the x-axis for Test Case

1.

As expected, the y velocity demonstrates the inverted V-shape from the bang-bang

control of the optimal control solution. Despite the open loop nature of the controller,

the measured x and y trajectories track the optimal control solution fairly well with

a root-mean-square error (RMSE) of 8.9 mm in x and 58.3 mm in y. However, the

theta velocities are further off and the accumulated errors yield a RMSE over 1 radian

(58.01 degrees) and can be seen in Figure 31g.

The same trajectory and open loop controller is then demonstrated on the omnibot

hardware and shown in Figure 33. A sequence of four frames of the video from this

demonstration is shown in Figure 32 to demonstrate the omnibot motion.

Figure 32: Test 1 Hardware Video Frames

1See https://github.com/GuiRitter/OpenBase/issues/2 and https://github.com/GuiRitter/OpenBase/issues/7
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 33: Test 1 hardware open loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 30 64
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The pose of the omnibot over the trajectory is shown in Figures 33c, 33e and 33g.

While the theta error is less than the error shown in Figure 31g for the simulated robot

(0.095 rads vs 1.012 rads), the x error is much greater than the error in Figure 31c

(83.9 mm vs 8.9 mm) and the y error is slightly greater than the error in Figure 31e

(71.4 mm vs 58.3 mm). The need for feedback control is made clear to negate the

accumulated error. Lastly, the state velocity outputs are shown in Figures 33d, 33f

and 33h. Due to the one tenth scaling to fit the scenario within the dimensions of

the ANT Center VICON chamber, the dirty derivative is estimating x axis velocities

at the millimeter order of magnitude and generates the noisy measurement seen in

Figure 33d.

4.2.2 Test Case 2: Rotating Chief 1

The second test case uses the same initial conditions as Test Case 1 in Section 4.2.1,

but with the chief rotating at a constant two degrees per second (approximately 0.035

rad/s). The time optimal solution for this scenario is shown in Figure 35. One

significant difference from Test Case 1 is that the trajectory covers more distance

over a longer period of time (79.47 s vs 53.66 s) due to the cone target rotating to

the opposite side of the initial position. The control history in Figure 35b is also

more complex due to the deputy passing by the keep out zone constraint as close as

possible without crossing into it. This test case is further compared to Test Case 4

in Section 4.2.4 where alternative dynamics are used instead of CW dynamics in the

optimal control formulation.

The results from demonstrating the optimal solution in Figure 35 on the omnibot

hardware with the open loop controller are shown in Figure 36. Similar to Test Case

1, error is accumulated throughout the trajectory yielding a RMSE of 123.6 mm in

x, 250.8 mm in y, and 0.0737 rad in θ.
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Figure 34: Test Case 2 Optimal Solution: Trajectory
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 35: Test 2 time optimal solution, as computed using the GPOPS solver.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 36: Test 2 hardware open loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 35 68
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Test Case 2 is then demonstrated on the omnibot hardware using the closed loop

controller from Algorithm 2 in Section 3.3.3.3. The results are shown in Figure 37

and when compared to Figure 36 highlight the impact of the closed loop controller

in removing the accumulated error via the feedback signal shown in Figure 38. As

further shown in Figures 37c, 37e and 37g, the pose of the omnibot closely tracks

the optimal control trajectory with an RMSE of 9.6 mm in x, 13.7 mm in y, and

0.0502 rad in θ. While the omnibot pose tracks the trajectory closer with the closed

loop controller, the state velocities shown in Figures 37d, 37f and 37h are noticeably

noisier. This is primarily due to the feedback signal in Figure 38 being added to the

commanded velocities. The one tenth scaling increases the difficulty for the feedback

controller as the motion capture system is only able to resolve robot position on the

order of millimeters and the scaled x velocities in this test case are only a few mm/s.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 37: Test 2 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 35 70
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Figure 38: Test 2 feedback signal applied during the hardware closed loop control test
to correct for error in the omnibot pose measured by the VICON system. A spike
is shown at around 56 seconds due to an issue in the feedback controller when the
orientation wraps from π to −π.

4.2.3 Test Case 3: Rotating Chief 2

The third test case uses the same initial conditions and constant chief rotation

rate of two degrees per second as Test Case 2 except the chief initial orientation is

zero rad instead of −π/2 rad. The resulting trajectory is shown in Figure 40 and

is smoother than Test Case 2 due to the lack of interaction with the keep out zone

constraint. The control history in Figure 40b offers a clear example of bang-off-bang

control as mentioned in Section 4.2.1.

The closed loop controller is then used to demonstrate the optimal trajectory via

hardware in Figure 41 and simulation in Figure 42. The feedback signals applied

throughout each demonstration are shown in Figure 43. While the hardware theta

correction is centered around zero in Figure 43a, the simulated theta correction has a
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Figure 39: Test Case 3 Optimal Solution: Trajectory

negative bias that can be seen in that is correcting for the orientation issue mentioned

in Section 4.2.1. Due to being one of the smoothest trajectories, this test yields some

of the lowest RMSE values using the hardware at 7.2 mm in x, 7.5 mm in y, and

0.0039 rad in θ. This compares to the results from the simulation with RMSE values

of 1.5 mm in x, 2.0 mm in y, and 0.0205 rad in θ.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 40: Test 3 time optimal solution, as computed using the GPOPS solver.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 41: Test 3 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 40 74
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 42: Test 3 simulated closed loop control compared to the optimal control
trajectory in Figure 40
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(a) Test 3 Hardware Test Feedback Signal

(b) Test 3 Simulated Test Feedback Signal

Figure 43: Compared velocity feedback signals applied to the hardware and simulated
demonstrations in Test Case 3. A negative bias is visible in the theta feedback signal
in Figure 43b correcting for an issue with orientation in the simulator.
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4.2.4 Test Case 4: Approximated Dynamics 1

While the first three test cases use the CW equations of motion for state dynamics,

the following two test cases use the double integrator (DI) based free-flying model

introduced in Section 2.1.2.3. Test Case 4 uses the same initial conditions as Test Case

2 but with the DI dynamics. The main difference in the result as shown in Figure 44 is

the DI dynamics remove the interaction with the keep out zone constraint as present

in Figure 35.

Figure 45 highlights the differences between the trajectories in Test Cases 2 and

4. Since the deputy does not need to counteract the additional terms in the CW

dynamics to maneuver around the keep out zone, it is able to apply more thrust

towards reaching the objective and reaches the terminal conditions approximately 5

seconds faster. However, this trajectory demonstrates a scenario where the double

integrator approximation would not be sufficient in an actual orbital scenario, and

highlights the importance of the testbed being able to utilize the CW equations.

Regardless, the testbed is shown to be capable of demonstrating this trajectory via

hardware in Figure 46.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 44: Test 4 time optimal solution, as computed using the GPOPS solver.
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(a) Test 2 Clohessy-Wiltshire

(b) Test 4 Double Integrator

Figure 45: Compared dynamics of Test 2 using CW dynamics vs Test 4 using DI
dynamics
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 46: Test 4 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 44 80



www.manaraa.com

4.2.5 Test Case 5: Approximated Dynamics 2

Similar to Test Case 4, Test Case 5 approximates Test Case 3 with DI dynamics

instead of using CW dynamics. However, unlike Test Case 4, this test case is successful

in approximating the optimal trajectory with DI dynamics as shown in Figure 47.

Figure 48 shows the difference in the using the two state dynamics. The duration of

the two trajectories is only different by 0.01 s. This is primarily due to no significant

interaction with the keep out zone that would require additional maneuvering under

the CW dynamics. The DI approximated trajectory is then demonstrated on the

omnibot hardware as shown in Figure 49.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 47: Test 5 time optimal solution, as computed using the GPOPS solver.
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(a) Test 3 Clohessy-Wiltshire

(b) Test 5 Double Integrator

Figure 48: Compared dynamics of Test 3 using CW dynamics vs Test 5 using DI
dynamics.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 49: Test 5 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 47 84
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4.2.6 Test Case 6: Double Mass Deputy

The final two test cases demonstrate the flexibility of the hardware testbed to

demonstrate deputy satellites with different physical configurations. Any initial con-

dition can be modified in the optimal control formulation, including maximum force

and torque limits, mass, moment of inertia, and the chief rotation rate. Test Case

6 uses all the same initial conditions and the CW dynamics as Test Case 3, but the

deputy is modeled with twice as much mass (200 kg vs 100 kg). The time optimal

control solution is found in Figure 50.

The optimal trajectories for Test Case 3 and 6 are compared in Figure 51. As

expected, the deputy in this scenario with twice as much mass but the same thrust

constraints takes approximately 20 seconds longer to reach the terminal conditions.

The effect of the mass can also be seen in the planar velocities in Figure 50d, where it

peaks below 0.2 m/s vs 0.33 m/s in Test Case 3. This trajectory is then demonstrated

on the omnibot hardware as shown in Figure 52.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 50: Test 6 time optimal solution, as computed using the GPOPS solver.
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(a) Test 3 100 kg Deputy

(b) Test 6 200 kg Deputy

Figure 51: Compared mass of Test 3 using a 100 kg deputy vs Test 6 using a 200 kg
deputy.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 52: Test 6 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 50 88
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4.2.7 Test Case 7: Half Mass Deputy

Similar to Test Case 6, Test Case 7 uses the same setup as Test Case 3, but the

deputy is modeled with half as much mass (50 kg vs 100 kg). The time optimal

control solution is found in Figure 53.

The optimal trajectories for Test Cases 3 and 7 are compared in Figure 54. As

expected, the deputy in this scenario with half as much mass but the same thrust

constraints reaches the terminal conditions approximately 18 seconds faster. This

trajectory is then demonstrated on the omnibot hardware as shown in Figure 55.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure 53: Test 7 time optimal solution, as computed using the GPOPS solver.
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(a) Test 3 100 kg Deputy

(b) Test 7 50 kg Deputy

Figure 54: Compared mass of Test 3 using a 100 kg deputy vs Test 7 using a 50 kg
deputy.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 55: Test 7 hardware closed loop control with data collected off the omnibot
robot in the ANT motion capture lab, compared to the optimal trajectory shown in
Figure 53 92
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4.3 Full Scale Testing

While all of the tests in Section 4.2 are performed at 10% scaling to fit within

the usable area of the ANT VICON chamber, the following demonstrations utilize a

much larger test area outfitted with 60 VICON cameras. The usable area in these

tests is 8x8 m vs the 1x1 m area used in Section 4.2. Therefore, scaling still exists,

but with 80% scaling the measurements errors are only multiplied by 1.25x instead of

10x when scaling back up to compare the resulting trajectory to the optimal control

solution. The first three test cases from Section 4.2 are demonstrated at 80% scaling

in Figures 56 to 58.

However, while the omnibot hardware is capable of performing Test Case 1 at 80%

scaling, the other two test cases suffer significant tracking errors during peak veloci-

ties. This is due to to the maximum hardware velocity of 0.22 m/s. A comparison of

the maximum hardware velocity and the peak velocities required for each scenario is

shown in Figures 59 to 61.

In order to successfully demonstrate the other two test cases, a scaling factor of

70% for Test Case 2 and 60% for Test Case 3 is applied to bring the peak velocities

under the maximum hardware velocity limit. The results of these tests are shown in

Figures 62 and 63.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 56: Test 1 MAV Lab 80% scaling, performed under maximum hardware ve-
locity.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 57: Test 2 MAV Lab 80% scaling, unable to perform velocities over the maxi-
mum hardware velocity.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 58: Test 3 MAV Lab 80% scaling, unable to perform velocities over the maxi-
mum hardware velocity.
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Figure 59: Test 1 under the hardware velocity limit of 0.22 m/s
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Figure 60: Test 2 without scaling requires velocities over the hardware velocity limit
of 0.22 m/s. A 70% scaling reduces the peak below the limit.

Figure 61: Test 3 without scaling requires velocities over the hardware velocity limit
of 0.22 m/s. A 60% scaling reduces the peak below the limit.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 62: Test 2 MAV Lab 70% scaling, performed under maximum hardware ve-
locity.
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure 63: Test 3 MAV Lab 60% scaling, performed under maximum hardware ve-
locity.
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The results of this section highlight the hardware limitations of the testbed by its

maximum velocity constraints. Even with ample space to perform the scenario trajec-

tories at full scale, a degree of down scaling is still required to enable the hardware to

follow the trajectory without larger errors during peak velocities. However, as shown

in Figures 62 and 63, an appropriate scaling for the scenario can be implemented

to take advantage of the additional space while also enabling a greater range of test

scenarios.

4.4 Error Analysis

This section presents a comparison of the various test case, hardware, and con-

troller configurations via the Root Mean Square Error (RMSE) of each. Position

error (x and y) is in terms of millimeters and orientation error (θ) is in terms of

radians. First, the open loop and closed loop tests on the hardware are compared to

show the substantial reduction in error with feedback control. Then, the closed loop

tests on the simulated and real hardware are compared to show that the hardware

performed as expected from the simulation. Lastly, the error from the scaled closed

loop hardware tests in the smaller VICON chamber are compared with the full scale

demonstrations.

4.4.1 Open Loop vs Closed Loop

The RMSE values from each test on the omnibot hardware using the open and

closed loop controllers are found in Table 7. As expected, the closed loop controller

corrects for error that accumulates over the open loop demonstrations, and the RMSE

values are an order of magnitude lower for all of the position errors. However, the

orientation error is actually higher in a few of the closed loop cases. This is due to

an unresolved issue with the feedback signal around the angle wrapping that occurs
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from π to −π in Test Cases 1, 2, and 4 as mentioned in Section 4.2.1.

Table 7: RMSE Open Loop vs Closed Loop

Open Closed
RMSE x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad]
Test 1 83.9 71.4 0.095 5.9 8.4 0.1355
Test 2 123.6 250.8 0.0737 9.6 13.7 0.0502
Test 3 95.5 130.3 0.0526 7.2 7.5 0.0039
Test 4 168.5 128.2 0.0435 10.0 6.2 0.0813
Test 5 96.5 153.9 0.1036 5.9 8.1 0.0040
Test 6 56.7 58.0 0.0855 9.8 5.6 0.0076
Test 7 141.8 278.7 0.0877 13.9 23.4 0.0050

4.4.2 Simulation vs Hardware

The RMSE values from each test of the closed loop controller using the open base

simulation and omnibot hardware are found in Table 8. The position errors are lower

in the simulation due to various errors introduced from using real hardware that are

not modeled in the simulation, but the values are within the same order of magnitude.

However, while the orientation errors were actually occasionally higher in the closed

loop tests vs the open loop tests on the hardware, the simulated closed loop tests have

higher orientation errors than the closed loop tests on the hardware in Test Cases 3,

5, 6 and 7. This is likely partially due to the simulated orientation stability issue

mentioned in Section 4.2.1.

4.4.3 Full Scale vs Scaled Down

The omnibot hardware was tested in a larger VICON chamber at the MAV lab

as introduced in Section 4.3 for the first three test cases. Table 9 presents the RMSE

values of the closed loop controller running the hardware in the MAV lab with max-

imum scaling (80% for Test Case 1, 70% for Test Case 2, and 60% for Test Case 3).
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Table 8: RMSE Simulation vs Hardware

Simulation Hardware
RMSE x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad]
Test 1 1.0 2.2 0.1086 5.9 8.4 0.1355
Test 2 5.9 6.4 0.0292 9.6 13.7 0.0502
Test 3 1.5 2.0 0.0205 7.2 7.5 0.0039
Test 4 1.2 2.0 0.0283 10.0 6.2 0.0813
Test 5 1.6 2.0 0.0205 5.9 8.1 0.0040
Test 6 1.0 1.1 0.0224 9.8 5.6 0.0076
Test 7 1.8 4.2 0.0230 13.9 23.4 0.0050

Additional tests were run at 10% scaling in the MAV lab to further compare to the

test environment of the 10% scaling tests in the ANT lab in Section 4.2.

The RMSE values of the tests at maximum scaling are higher than the tests at

10% scaling in Section 4.2 in the ANT lab. However, when comparing the maximum

scaling tests to tests performed at 10% scaling in the same lab, they are lower. This

indicates that the testbed performs the trajectories with less error while closer to

the full scale dimensions, as long as the required velocities are below the hardware

limits. If the velocities are not scaled down below the hardware limits, performance

is degraded as shown in Figures 57 and 58. The source of the additional error in

the 10% scaling tests in the MAV lab compared to the same tests performed in the

ANT lab was not thoroughly investigated. However, it is likely that the error could

be due to an outdated motion capture facility calibration as the larger facility was

not recalibrated prior to these tests.

Table 9: RMSE Full Scale vs Scaled Down

Max Scaling (MAV) 10% Scaling (MAV) 10% Scaling (ANT)
RMSE x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad]
Test 1 9.2 3.2 0.2201 36.1 52.9 0.2904 5.9 8.4 0.1355
Test 2 19.0 28.8 0.0839 23.5 34.7 0.0716 9.6 13.7 0.0502
Test 3 7.2 12.9 0.0347 28.8 25.7 0.0081 7.2 7.5 0.0039
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4.5 Chapter Summary

This chapter analyzes the performance of the omnibot testbed through simulation

and hardware across seven test cases. An overview of the test scenario and a graph-

ical representation of the trajectory constraints and terminal conditions is shown in

Section 4.1. Highlights of the results are discussed in Section 4.2, however all of the

test results for the four runs of each test case can be found in the appendices. While

the tests in Section 4.2 are performed at 10% scaling due to lab space constraints,

tests performed in a larger lab space are presented in Section 4.3 to compare results

from tests at closer to full scale. Section 4.4 then presents the root-mean-square

error (RMSE) of each test case to compare open loop to closed loop performance,

simulation to hardware performance, and full scale to 10% scaling performance.
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V. Conclusions

This thesis presents the background, design, implementation, and results of the

omnibot mobile robot testbed for autonomous satellite servicing research. The omni-

bot offers a three degrees of freedom (3-DOF) hardware platform built from a commer-

cially available robotics kit and does not require dedicated lab space. Demonstrations

can be performed within existing motion capture facilities commonly being used for

indoor unmanned aerial vehicle (UAV) or mobile robotics research. The omnibot

platform serves as a lower-fidelity hardware testbed that helps fill the gap between

simulation and limited higher-fidelity hardware demonstration.

The background on the kinematics and dynamics that reconcile the holonomic

motion of the mobile robot to the behavior of a deputy satellite on orbit is found in

Sections 2.1 and 2.2. Section 2.3 introduces optimal control methods and a commer-

cial solver used to numerically solve for reference trajectories for the hardware testbed

to demonstrate. Section 2.4 gives an overview of the Robot Operating System (ROS),

which is used for the testbed network framework.

Section 3.1 details the various components of the omnibot hardware, as well as the

motion capture system that measures the performance of the testbed. Section 3.2 out-

lines the ROS network setup, including the computing environment that provides the

supporting functions to run and record the demonstrations. Section 3.3 provides an

example satellite servicing scenario and the optimal control formulation used to com-

pute the guidance trajectories to complete an inspection of a rotating chief satellite

in minimum time. Section 3.3 also provides an example feedback control algorithm

used to follow the guidance trajectories.

The results of demonstrating the example inspection scenario with the hardware

testbed are presented and analyzed in Sections 4.1 and 4.2. The orbital servicing

demonstration scenarios take place over a 10 m2 area, but due to space constraints in
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the primary lab used in this research the demonstrations in Section 4.2 are scaled down

to a 1 m2 area (10% scaling). Results from demonstrations over an 8 m2 area (80%

scaling) in a larger motion capture facility are presented in Section 4.3. Section 4.4

then analyzes the root-mean-square error (RMSE) of the omnibot pose throughout

each test case to compare the performance of the testbed across the various test

conditions.

5.1 Thesis Contributions

• Built a low-cost 3-DOF hardware testbed for autonomous satellite servicing

research based on a variant of the commercially available TurtleBot mobile

robot. The testbed provides a lower-fidelity alternative to limited state-of-the-

art facilities for rapid control algorithm prototyping.

• Set up a ROS network that enables communication between the mobile robot,

the satellite control simulation that outputs the guidance trajectories and con-

trol commands, and the motion capture system that relays navigation measure-

ments for feedback control and testbed performance analysis.

• Provided an example satellite servicing scenario involving the inspection of a

rotating chief satellite that demonstrates the capabilities of the testbed. The

example scenario and example feedback controller are designed to be modified

or replaced to aid the development of future controls research.

• Performed simulation and hardware testing to validate the performance of the

testbed across seven test cases based on the example scenario. Testing is per-

formed in two different motion capture facilities to highlight the flexibility of

the testbed in different environments and to show the effect of distance scaling

in smaller laboratories.
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5.2 Future Work

• Build additional copies of the omnibot mobile robot to enable demonstration

of multi-agent behavior. An additional omnibot could be introduced to model

the chief satellite instead of only using the origin of the Local Vertical, Local

Horizontal (LVLH) reference frame.

• Implement the on-board laser distance sensor to enable a state estimation com-

ponent of the research with the testbed. Higher fidelity odometry could be

implemented to improve on-board navigation and reduce the reliance on the

motion capture system.

• Consider adding more phases to the satellite servicing scenario. Run tests cases

with different initial conditions, deputy satellite configurations, chief satellite

rotation rates, terminal conditions, optimal control objective functions, and

time frames.

• Analyze the performance of more robust control algorithms or state-of-the-art

techniques such as Artificial Potential Functions (APF) or Model Predictive

Control (MPC) [17].
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Appendix A. Test Case 1

Appendix A includes all of the output figures for Test Case 1. Analysis of these

results is found in Section 4.2.1. Test Case 1 uses Clohessy-Wiltshire dynamics and

a stationary chief with no rotation rate and an initial orientation of −π/2 radians.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure A1: Test 1 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure A2: Test 1 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure A3: Test 1 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure A4: Test 1 Simulated Closed Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure A5: Test 1 Hardware Closed Loop Control
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Appendix B. Test Case 2

Appendix B includes all of the output figures for Test Case 2. Analysis of these

results is found in Section 4.2.2. Test Case 2 uses Clohessy-Wiltshire dynamics and a

rotating chief with a 2 deg/s rotation rate and an initial orientation of −π/2 radians.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure B1: Test 2 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure B2: Test 2 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure B3: Test 2 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure B4: Test 2 Simulated Closed Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure B5: Test 2 Hardware Closed Loop Control
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Appendix C. Test Case 3

Appendix C includes all of the output figures for Test Case 3. Analysis of these

results is found in Section 4.2.3. Test Case 3 uses Clohessy-Wiltshire dynamics and

a rotating chief with a 2 deg/s rotation rate and an initial orientation of 0 radians.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure C1: Test 3 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure C2: Test 3 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure C3: Test 3 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure C4: Test 3 Simulated Closed Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure C5: Test 3 Hardware Closed Loop Control
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Appendix D. Test Case 4

Appendix D includes all of the output figures for Test Case 4. Analysis of these

results is found in Section 4.2.4. Test Case 4 uses Double Integrator dynamics and a

rotating chief with a 2 deg/s rotation rate and an initial orientation of −π/2 radians.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure D1: Test 4 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure D2: Test 4 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure D3: Test 4 Hardware Open Loop Control

129



www.manaraa.com

(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure D4: Test 4 Simulated Closed Loop Control

130



www.manaraa.com

(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure D5: Test 4 Hardware Closed Loop Control
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Appendix E. Test Case 5

Appendix E includes all of the output figures for Test Case 5. Analysis of these

results is found in Section 4.2.5. Test Case 5 uses Double Integrator dynamics and a

rotating chief with a 2 deg/s rotation rate and an initial orientation of 0 radians.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure E1: Test 5 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure E2: Test 5 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure E3: Test 5 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure E4: Test 5 Simulated Closed Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure E5: Test 5 Hardware Closed Loop Control
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Appendix F. Test Case 6

Appendix F includes all of the output figures for Test Case 6. Analysis of these

results is found in Section 4.2.6. Test Case 6 uses Clohessy-Wiltshire dynamics and

a rotating chief with a 2 deg/s rotation rate and an initial orientation of 0 radians.

Test Case 6 also uses a deputy with a mass of 200 kg instead of 100 kg.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure F1: Test 6 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure F2: Test 6 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure F3: Test 6 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure F4: Test 6 Simulated Closed Loop Control

142



www.manaraa.com

(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure F5: Test 6 Hardware Closed Loop Control
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Appendix G. Test Case 7

Appendix G includes all of the output figures for Test Case 7. Analysis of these

results is found in Section 4.2.7. Test Case 7 uses Clohessy-Wiltshire dynamics and

a rotating chief with a 2 deg/s rotation rate and an initial orientation of 0 radians.

Test Case 7 also uses a deputy with a mass of 50 kg instead of 100 kg.
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(a) Trajectory (b) Control History

(c) Position (d) Planar Velocities

(e) Orientation (f) Angular Velocity

Figure G1: Test 7 Time Optimal Solution
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure G2: Test 7 Simulated Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure G3: Test 7 Hardware Open Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure G4: Test 7 Simulated Closed Loop Control
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(a) Optimal Trajectory (b) Compared Trajectory

(c) Compared X (d) Compared X Velocity

(e) Compared Y (f) Compared Y Velocity

(g) Compared Theta (h) Compared Theta Velocity

Figure G5: Test 7 Hardware Closed Loop Control
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